2017.2-2?EE-MC

November 3, 2017

1 2017.2 2ž EE Turma MC

2 Questão 1

Para o caso geral, os fasores quem representam as forças que agem sobre a massa em um sistema massa, mola, amortecedor sob excitação harmônica são mostrados abaixo. As outras situações podem ser determinadas rapidamente através da análise deste diagrama.

2.0.1 Baixa frequência de excitação

Quando a frequência é muito baixa, as magnitudes das forças viscosa (F_v) e de inrcia (F_i) tende para zero, pois a primeira é proporcional à frequência da força de excitação e a segunda ao seu quadrado. Assim, o diagrama de fasores reduz-se ao mostrado abaixo. É claro que para que haja equilíbrio dinâmico, as forças tem que ter a mesma amplitude, portanto,

$$F = \kappa X$$

ou

$$X = \frac{F}{\kappa}$$
.

2.0.2 Alta frequência de excitação

Para frequências muito altas, a magnitude da força elástica (F_e) e da força viscosa tornam-se desprezíveis frente à magnitude da força de inércia, pois a magnitude da última é proporcional ao *quadrado* da frequência. Desta forma, o diagrama de fasores reduz-se a É claro que, no equilíbrio dinâmico, temos

$$X = \frac{F}{m\omega^2},$$

mas como ω é muito grande, a amplitude de vibração tende para zero.

2.0.3 Ressonância

Na ressonância, temos que $\phi=\pi/2$, portanto o diagrama de fasores torna-se, onde claramente podemos ver que a única força que contribui para equilibrar o força externa aplicada é a força de atrito, já que a força elástica e a força de inércia são auto-equilibradas. A amplitude do deslocamento é então

$$X = \frac{F}{c\omega}$$
.

Dividindo o numerador e o denominador desta expressão por κ , ficamos com

$$X = \frac{F/k}{(c\omega)/k'},$$

que é, obviamente,

$$X = \frac{\delta_{\rm st}}{2\zeta r}.$$

2.1 Questão 2

É dado que a massa de desbalanceamento é igual a 0.020kg, que está localizado no raio externo de um rotor com 145mm de raio.

A rigidez dos suportes elásticos é 125 KN/m, e sua massa total é 50 kg. Claramente podemos calcular a frequência natural do sistema como,

```
In [1]: from math import pi, sqrt, log
    k = 125000 # N/m
    M = 50 # kg
    m = 0.020 # kg
    e = 0.145 # m
    wn = sqrt(k/M)
    print(wn)
```

50.0

Para calcular o amortecimento, podemos usar o decremento logarítmico, com os dado do enunciado. É dito que a amplitude de vibração no ciclo 11 é 80% daquela no ciclo 1, e como,

$$\delta = \frac{1}{n} \ln \frac{x_1}{x_{n+1}},$$

temos que

```
In [2]: n = 10
          delta = (1.0/n)*log(1.0/0.8)
          print(delta)
```

0.02231435513142098

```
e como \delta=2\pi\zeta,   
In [3]: zeta = delta/(2*pi)   
print(zeta)
```

0.0035514399210736488

que é um valor bem pequeno, da ordem de 0.3%.

A frequência de excitação, que vem do desbalanceamento da máquina, é 1200 rpm, ou

125.66370614359172

A razão de amortecimento é,

2.5132741228718345

Como p amortecimento é muito baixo, podemos usar a curva para $\zeta=0$ do gráfico dado, e para r=2,5, podemos tirar que, aproximadamente,

$$\frac{F_T}{me\omega_n^2} = 1.1.$$

A força transmitida pode ser calculada diretamente desta fórmula, já que temos todos os valores necessários,

7.975000000000005

em Newtons é claro.

2.2 Questão 3

Este é um simples problema de vibração forçada com uma força harmônica. Só é necessário calcular a massa equivalente e aplicar a fórmula diretamente.

Como o tambor gira sem delizar, podemos calcular a massa equivalente muito facilmente pela igualdade de energias cinéticas.

A energia cinética equivalente é $T_{\rm eq}=\frac{1}{2}m\dot{x}^2$, enquanto que a energia cinética do problema original contém a energia cinética de translação e de rotação, $T=\frac{1}{2}m\dot{x}^2+\frac{1}{2}J_0\dot{\theta}^2$, onde, é claro, $\dot{x}=R\dot{\theta}$.

Além disto, para um cilindro, $J_0 = \frac{1}{2}mR^2$. Assim,

$$T = \frac{1}{2} \left[m\dot{x}^2 + \frac{1}{2}mR^2 \frac{\dot{x}^2}{R^2} \right] = \frac{1}{2} \left[m + \frac{1}{2}m \right] \dot{x}^2 = \frac{1}{2} 1.5m\dot{x}^2.$$

Igualando as duas energias cinéticas, é claro que $m_{\rm eq}=1.5m$. A massa equivalente é então,

In [7]: meq =
$$1.5*0.150$$
 # kg

A rigidez e o coeficiente de amortecimento viscoso são, respectivamente, 10~N/m e e 8~Ns/m, como mostrado na figura.

```
In [8]: k = 10 \# N/m

c = 8 \# Ns/m
```

Com estes valores podemos calcular as grandezas características do problema,

Out[11]: 2.666666666666665

O sistema é claramente superamortecido! Se for colocado em vibração livre, não oscilará, mas este é um problema de vibração forçada com excitação harmônica.

Podemos calcular a resposata de um sistema com 1GL a uma excitação harmônica com

$$x(t) = Xe^{i\omega t}$$
, $X = H(i\omega)\delta_{\rm st}$; $H(i\omega) = \frac{1}{1 - r^2 + 2\zeta ri'}$

conforme dado no formulário. No caso,

```
In [12]: F0 = 0.1 # N
dst = F0/k
dst
```

Out[12]: 0.01

A frequência da força de excitação é 1.0 Hz, portanto,

O sistema está próximo da ressonância, mas como o amortecimento é muito alto, esperamos que a amplitude da resposta não seja muito grande. Calculando $H(i\omega)$,

```
In [14]: Hiw = 1.0/(1 - r**2 + 2*zeta*r*1j)
Hiw
```

Out[14]: (0.00442015321877042-0.19884542287187107j)

O deslocamento (complexo) X é então,

Out[15]: (4.4201532187704196e-05-0.001988454228718711j)

A amplitude e a fase do deslocamento são,

Out[16]: (0.0019889454480093373, -1.5485708949818622)

A resposta é então

$$x(t) = 1.99 \times 10^{-2} \sin(6.28t - 1.55).$$

2.3 Questão 4

Como o sistema é superamortecido, a resposta é dada pela expressão

$$x(t) = C_1 e^{(-\zeta + \sqrt{\zeta^2 - 1})\omega_n t} + C_2 e^{(-\zeta - \sqrt{\zeta^2 - 1})\omega_n t},$$

com

$$C_1 = \frac{x_0 \omega_n (\zeta + \sqrt{\zeta^2 - 1}) + \dot{x}_0}{2\omega_n \sqrt{\zeta^2 - 1}}, \qquad C_2 = \frac{-x_0 \omega_n (\zeta - \sqrt{\zeta^2 - 1}) - \dot{x}_0}{2\omega_n \sqrt{\zeta^2 - 1}}.$$

OBS: A fórmula dada na prova está incorreta, o parêntese que fecha o expoente está no final de cada termo, o que não faz o menor sentido pois aí as soluções divergiriam. Obviamente vou considerar correto quem fez de acordo com a fórmula do enunciado.

Felizmente, no nosso caso, $x_0 = 0$, e as constantes reduzem-se a

$$C_1 = \frac{\dot{x}_0}{2\omega_n\sqrt{\zeta^2 - 1}}, \qquad C_2 = \frac{-\dot{x}_0}{2\omega_n\sqrt{\zeta^2 - 1}}.$$

A velocidade inicial é dada no enunciado da questão como 100~mm/s e as outras grandezas todas já estão calculadas, assim, podemos prontamente calcular as constantes.

Out[17]: (2.4720661623652207, 32.96088216486961)

Out[18]: (0.0030338993810845897, -0.0030338993810845897)

Os expoentes da fórmula são,

Out[19]: (-0.19460050430144582, -5.138732829031888)

In [20]: e1*wn, e2*wn

Out[20]: (-1.2973366953429721, -34.25821886021259)

A fórmula para o deslocamento é então,

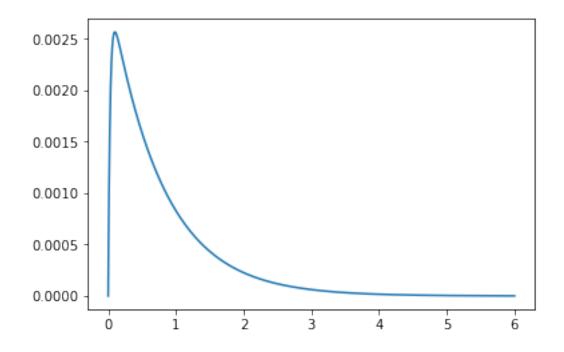
$$x(t) = 3.03 \times 10^{-3} e^{-1.29t} - 3.033.03 \times 10^{-3} e^{-34.29t}.$$

Só para ilustrar, vamos plotar a solução.

```
In [21]: import matplotlib.pyplot as plt
    import numpy as np
    %matplotlib inline

t = np.linspace(0,6,1000)
    x = C1*np.exp(e1*wn*t)+C2*np.exp(e2*wn*t)
    plt.plot(t, x)
```

Out[21]: [<matplotlib.lines.Line2D at 0x7f3fe8a23390>]



In []:

In []: